Теоретико-игровая модель ромбовидной иерархической структуры

Пругло Лев Сергеевич
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

Исследован вопрос построения ситуации равновесия по Нэшу в ромбовидной игре Г. В частности доказана лемма о существовании ситуации равновесия по Нэшу. Конкретизирована теоретико-игровая модель через определение множеств стратегий игроков, в частности, описание множеств стратегий системами линейных неравенств. Показано, что добавление связи поставок ресурсов между центром и игроком нижнего уровня приводит к появлению второй системы неравенств игрока нижнего уровня, которая учитывает формализацию производства с использованием ресурсов управляющего центра отдельно от производства с помощью ресурсов игроков среднего уровня. Построены оптимизационные задачи линейного и нелинейного программирования с параметрами и показана возможность их использования для нахождения ситуации равновесия по Нэшу. Для упрощения задачи введена кооперативная подыгра между игроками среднего уровня. Разработаны и учтены три варианта характеристических функций игроков среднего уровня для вычисления тремя разными способами минимальной гарантированной полезности, необходимой для вычисления вектора Шепли – принятого принципа оптимальности. Представлены численные примеры, показывающие различные значения вектора Шепли при использовании трех различных подходов к определению минимальной гарантированной полезности. Сформулирована в общем виде кооперативная игра на ромбовидной структуре. Для каждой из коалиции в кооперативной игре были выведены формулы для вычисления вектора Шепли. Для программной реализации был составлен алгоритм с модифицированным методом Монте-Карло, который позволил конкретнее описать методику случайного поиска для нахождения ситуации равновесия по Нэшу, значений характеристических функций в кооперативной игре и вектора Шепли через полное покрытие области допустимых решений систем линейных неравенств игроков среднего уровня. Была определена структура алгоритма, проведен алгоритмический анализ и выявлены особенности применения модифицированного метода Монте-Карло к решению задачи. По алгоритму была построена программная реализация, которая позволила численно решить данную задачу. Приведен пример выполнения программы по заданному алгоритму.

Введение 2
Обзор литературы . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Глава I Ромбовидная иерархическая структура 4
1.1. Описание теоретико-игровой модели . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2. Постановка задач оптимизации . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3. Формулировка кооперативной игры . . . . . . . . . . . . . . . . . . . . . . . . 16

Глава II Численный эксперимент 19
2.1. Модификация метода Монте-Карло и алгоритм программы . . . . . . . . . . 19
2.2. Результаты эксперимента с нахождением ситуации равновесия по Нэшу . . . 39
2.3. Результаты эксперимента с кооперативной игрой . . . . . . . . . . . . . . . . . 42

Заключение 45

Список литературы 47

Приложение 48

Задача относится к проблеме распределения ресурсов в иерархической структуре. В
работе [10] представлена модель классической иерархической игры, в которой задан один
управляющий центр и некоторое число подчиненных подразделений с разными связями
между игроками. В данной работе мы рассмотрим расширение этой математической мо-
дели.
В иерархической многошаговой игре с полной информацией геометрическая структура
самой игры является ромбом, то есть из одного центра ресурсы поступают в два подчи-
ненных подразделения, а они, в свою очередь, посылают произведенную промежуточную
продукцию последнему подразделению. Последнее подразделение производит продукцию,
от которой зависит величина полезности каждого игрока. Теоретико-игровые модели, ос-
нованные на такой структуре отношений игроков, называются ромбовидными. Рассмат-
ривается модель ромбовидной структуры иерархической игры с расширением, в которой
присутствует прямая связь между распределяющим центром и нижним производящим
подразделением.
Интерпретацией данной задачи может служить экономическая, экологическая или меж-
региональная характеристика, когда какой-то ресурс, в рамках межрегиональной про-
блематики, например воспринимаемый как человеческий капитал, распределяется феде-
ральным центром, а те, в свою очередь, отправляют его в муниципальные районы. Либо
экономическая иерархия с предприятиями, а именно в случае, когда в конгломерате от
управляющего центра распределяются финансы. Другой экономической интерпретацией
данных процессов может служить несовершенная конкуренция, когда в ходе конфлик-
тогенеза среди разных экономических агентов выстраивается иерархическая структура
монопольного подчинения. В рамках этой работы будем считать такую структуру уже
сложившейся. Для игры с характеристической функцией будет определена проблема по-
средничества и производственной кооперации в коалиционном разбиении подмножества
игроков всех уровней.
Целью данной работы является нахождение ситуации равновесия по Нэшу в общем и
численном виде игры Γ, и получение значений определенных характеристических функ-
ций кооперативной игры с распределением трансферабельной полезности между игроками
согласно принципу оптимальности – вектору Шепли, для чего необходима разработка ал-
горитма и программной реализации по математической модели, заданной на ромбовидной
структуре.
Рассмотрен процесс нахождения ситуации равновесия по Нэшу в определенной игре Γ.
Для этого доказана лемма о существовании ситуации равновесия по Нэшу и игре Γ. Кон-
кретизирована теоретико-игровая модель через определение множеств стратегий игроков,
в частности, составление систем неравенств. Показано, что добавление связи поставок
ресурсов между центром и игроком нижнего уровня приводит к появлению второй систе-
мы неравенств игрока нижнего уровня, которая учитывает формализацию производства
с использованием ресурсов управляющего центра отдельно от производства с помощью
ресурсов игроков среднего уровня. Были построены оптимизационные задачи линейно-
го и нелинейного программирования с параметрами и показана возможность нахожде-
ния ситуации равновесия по Нэшу. Чтобы разрешить проблему нахождения равновесия
в игре Γ была введена кооперативная подыгра между игроками среднего уровня. Раз-
работано и учтено три варианта одноэлементных характеристических функций игроков
среднего уровня для вычисления тремя различными способами минимальной гарантиро-
ванной полезности, необходимой для вычисления вектора Шепли – принятого принципа
оптимальности. Представлены численные примеры, показывающие специфику значений
вектора Шепли при использовании трех различных подходов к определению минималь-
ной гарантированной полезности. Сформулирована в общем виде кооперативная игра на

В данной работе рассмотрена проблематика задачи распределения ресурсов в ромбо-
видной иерархической теоретико-игровой модели, которая описывает свойства рыночных,
межрегиональных, экологических и иных классов задач.
Конкретизация теоретико-игровой модели через определение множеств стратегий игро-
ков в игре Γ показала, что добавление связи поставок ресурсов между центром и игроком
нижнего уровня, которая учитывает формализацию производства с использованием ресур-
сов управляющего центра отдельно от производства с использованием ресурсов игроков
среднего уровня, приводит к появлению дополнительной системы линейных неравенств
игрока нижнего уровня. Данное расширение обосновывается тем, что игроки среднего
уровня посылают игроку нижнего уровне не тот же набор типов ресурсов, что и управля-
ющий центр. Это существенное для реальных задач дополнение является оригинальным
и не рассматривалось ранее в литературе.
Рассмотрен процесс нахождения ситуации равновесия по Нэшу в определенной игре Γ.
Для этого доказана лемма о существовании ситуации равновесия по Нэшу и игре Γ. Кон-
кретизирована теоретико-игровая модель через определение множеств стратегий игроков,
в частности, составление систем неравенств. Показано, что добавление связи поставок
ресурсов между центром и игроком нижнего уровня приводит к появлению второй систе-
мы неравенств игрока нижнего уровня, которая учитывает формализацию производства
с использованием ресурсов управляющего центра отдельно от производства с помощью
ресурсов игроков среднего уровня. Были построены оптимизационные задачи линейно-
го и нелинейного программирования с параметрами и показана возможность нахожде-
ния ситуации равновесия по Нэшу. Чтобы разрешить проблему нахождения равновесия
в игре Γ была введена кооперативная подыгра между игроками среднего уровня. Раз-
работано и учтено три варианта одноэлементных характеристических функций игроков
среднего уровня для вычисления тремя различными способами минимальной гарантиро-
ванной полезности, необходимой для вычисления вектора Шепли – принятого принципа
оптимальности. Представлены численные примеры, показывающие специфику значений
вектора Шепли при использовании трех различных подходов к определению минималь-
ной гарантированной полезности. Сформулирована в общем виде кооперативная игра на
ромбовидной структуре, составлены равенства, которые определяют действия игроков в
рамках антагонистической игры двух коалиций. Для каждой из коалиции в кооператив-
ной игре выведены формулы для вычисления вектора Шепли. Для программной реализа-
ции составлен алгоритм с модифицированным методом Монте-Карло, который позволил
конкретнее описать методику случайного поиска для нахождения ситуации равновесия
по Нэшу, значений характеристических функций в кооперативной игре и вектора Ше-
пли через полное покрытие области допустимых решений систем линейных неравенств
игроков среднего уровня. Определена структура алгоритма, проведен алгоритмический
анализ и выявлены особенности применения модифицированного метода Монте-Карло к
решению задачи. По алгоритму построена программная реализация, которая позволила
численно решить данную задачу. Приведен пример выполнения программы по заданному
алгоритму, который показывает специфику в использовании трех подходов к определению
одноэлементных характеристических функций.
В ходе решения численного примера наглядно показано, что от способа расчета ми-
нимальной гарантированной полезности зависит то, какие значения компонент вектора
Шепли будут найдены для игроков среднего уровня, и то, что игрокам не всегда выгод-
но исходить из “оптимистичного”варианта, при котором управляющий центр отправляет
только один или два нулевых вектора ресурсов непосредственно игрокам среднего уровня.
В рамках продолжения данной научной проблематики возможны улучшения по части эв-
ристик и методов, которые можно использовать для решения систем линейных неравенств
в данной структуре. Рассмотрение динамики процесса также позволит полно раскрыть
потенциал представленной иерархической структуры. Не исключается также дальнейшее
расширение структуры для лучшего отражения отношений в иерархии между игроками.

[1] Amer R., Carreras F. Cooperation Indices and Weighted Shapley Values.
Mathematics of Operations Research. – Informs, USA, 1997, 14p. URL:
https://pubsonline.informs.org/doi/pdf/10.1287/moor.22.4.955

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    [telegram]

    Последние выполненные заказы

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Шагали Е. УрГЭУ 2007, Экономика, преподаватель
    4.4 (59 отзывов)
    Серьезно отношусь к тренировке собственного интеллекта, поэтому постоянно учусь сама и с удовольствием пишу для других. За 15 лет работы выполнила более 600 дипломов и... Читать все
    Серьезно отношусь к тренировке собственного интеллекта, поэтому постоянно учусь сама и с удовольствием пишу для других. За 15 лет работы выполнила более 600 дипломов и диссертаций, Есть любимые темы - они дешевле обойдутся, ибо в радость)
    #Кандидатские #Магистерские
    76 Выполненных работ
    Екатерина Б. кандидат наук, доцент
    5 (174 отзыва)
    После окончания института работала экономистом в системе государственных финансов. С 1988 года на преподавательской работе. Защитила кандидатскую диссертацию. Преподав... Читать все
    После окончания института работала экономистом в системе государственных финансов. С 1988 года на преподавательской работе. Защитила кандидатскую диссертацию. Преподавала учебные дисциплины: Бюджетная система Украины, Статистика.
    #Кандидатские #Магистерские
    300 Выполненных работ
    Петр П. кандидат наук
    4.2 (25 отзывов)
    Выполняю различные работы на заказ с 2014 года. В основном, курсовые проекты, дипломные и выпускные квалификационные работы бакалавриата, специалитета. Имею опыт напис... Читать все
    Выполняю различные работы на заказ с 2014 года. В основном, курсовые проекты, дипломные и выпускные квалификационные работы бакалавриата, специалитета. Имею опыт написания магистерских диссертаций. Направление - связь, телекоммуникации, информационная безопасность, информационные технологии, экономика. Пишу научные статьи уровня ВАК и РИНЦ. Работаю техническим директором интернет-провайдера, имею опыт работы ведущим сотрудником отдела информационной безопасности филиала одного из крупнейших банков. Образование - высшее профессиональное (в 2006 году окончил военную Академию связи в г. Санкт-Петербурге), послевузовское профессиональное (в 2018 году окончил аспирантуру Уральского федерального университета). Защитил диссертацию на соискание степени "кандидат технических наук" в 2020 году. В качестве хобби преподаю. Дисциплины - сети ЭВМ и телекоммуникации, информационная безопасность объектов критической информационной инфраструктуры.
    #Кандидатские #Магистерские
    33 Выполненных работы
    Анна К. ТГПУ им.ЛН.Толстого 2010, ФИСиГН, выпускник
    4.6 (30 отзывов)
    Я научный сотрудник федерального музея. Подрабатываю написанием студенческих работ уже 7 лет. 3 года назад начала писать диссертации. Работала на фирмы, а так же помог... Читать все
    Я научный сотрудник федерального музея. Подрабатываю написанием студенческих работ уже 7 лет. 3 года назад начала писать диссертации. Работала на фирмы, а так же помогала студентам, вышедшим на меня по рекомендации.
    #Кандидатские #Магистерские
    37 Выполненных работ
    Ольга Р. доктор, профессор
    4.2 (13 отзывов)
    Преподаватель ВУЗа, опыт выполнения студенческих работ на заказ (от рефератов до диссертаций): 20 лет. Образование высшее . Все заказы выполняются в заранее согласован... Читать все
    Преподаватель ВУЗа, опыт выполнения студенческих работ на заказ (от рефератов до диссертаций): 20 лет. Образование высшее . Все заказы выполняются в заранее согласованные сроки и при необходимости дорабатываются по рекомендациям научного руководителя (преподавателя). Буду рада плодотворному и взаимовыгодному сотрудничеству!!! К каждой работе подхожу индивидуально! Всегда готова по любому вопросу договориться с заказчиком! Все работы проверяю на антиплагиат.ру по умолчанию, если в заказе не стоит иное и если это заранее не обговорено!!!
    #Кандидатские #Магистерские
    21 Выполненная работа
    Яна К. ТюмГУ 2004, ГМУ, выпускник
    5 (8 отзывов)
    Помощь в написании магистерских диссертаций, курсовых, контрольных работ, рефератов, статей, повышение уникальности текста(ручной рерайт), качественно и в срок, в соот... Читать все
    Помощь в написании магистерских диссертаций, курсовых, контрольных работ, рефератов, статей, повышение уникальности текста(ручной рерайт), качественно и в срок, в соответствии с Вашими требованиями.
    #Кандидатские #Магистерские
    12 Выполненных работ
    Олег Н. Томский политехнический университет 2000, Инженерно-эконо...
    4.7 (96 отзывов)
    Здравствуйте! Опыт написания работ более 12 лет. За это время были успешно защищены более 2 500 написанных мною магистерских диссертаций, дипломов, курсовых работ. Явл... Читать все
    Здравствуйте! Опыт написания работ более 12 лет. За это время были успешно защищены более 2 500 написанных мною магистерских диссертаций, дипломов, курсовых работ. Являюсь действующим преподавателем одного из ВУЗов.
    #Кандидатские #Магистерские
    177 Выполненных работ
    Лидия К.
    4.5 (330 отзывов)
    Образование высшее (2009 год) педагог-психолог (УрГПУ). В 2013 году получено образование магистр психологии. Опыт преподавательской деятельности в области психологии ... Читать все
    Образование высшее (2009 год) педагог-психолог (УрГПУ). В 2013 году получено образование магистр психологии. Опыт преподавательской деятельности в области психологии и педагогики. Написание диссертаций, ВКР, курсовых и иных видов работ.
    #Кандидатские #Магистерские
    592 Выполненных работы
    Дарья Б. МГУ 2017, Журналистики, выпускник
    4.9 (35 отзывов)
    Привет! Меня зовут Даша, я окончила журфак МГУ с красным дипломом, защитила магистерскую диссертацию на филфаке. Работала журналистом, PR-менеджером в международных ко... Читать все
    Привет! Меня зовут Даша, я окончила журфак МГУ с красным дипломом, защитила магистерскую диссертацию на филфаке. Работала журналистом, PR-менеджером в международных компаниях, сейчас работаю редактором. Готова помогать вам с учёбой!
    #Кандидатские #Магистерские
    50 Выполненных работ

    Другие учебные работы по предмету

    Кооперативные игры на гиперграфах
    📅 2019год
    🏢 Санкт-Петербургский государственный университет