Методы и алгоритмы настройки проекционной оценки плотности вероятности случайного вектора в условиях малых выборок

Браништи, Владислав Владимирович

Введение . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Глава 1. Обзор методов оценивания функции плотности вероятности . . . . . . . . 15
§ 1.1. Основные определения и обозначения . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
§ 1.2. Оценки проекционного типа . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
§ 1.3. Ядерные оценки . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
§ 1.4. Другие виды оценок . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Выводы. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
Глава 2. Оптимизация проекционной оценки плотности вероятности . . . . . . . . 36
§ 2.1. Обоснование применимости проекционной оценки . . . . . . . . . . . . . . . . 36
§ 2.2. Методы настройки коэффициентов . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
§ 2.3. Методы настройки длины ряда . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
§ 2.4. Многомерный случай . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Выводы. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89
Глава 3. Применение оценок плотности вероятности . . . . . . . . . . . . . . . . . . . . . . . . . 91
§ 3.1. Оценивание функции регрессии. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91
§ 3.2. Классификация . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
§ 3.3. Оценивание количества информации . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Выводы . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Заключение . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Список литературы . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Актуальность темы и степень её разработанности. Разработка и
исследование моделей и алгоритмов анализа данных, обнаружения закономер-
ностей в данных в условиях неопределённости практически всегда предполагает
оценивание функции распределения либо плотности вероятности соответству-
ющих величин. В частности, задача оценивания плотности вероятности случай-
ного вектора возникает при разработке методов распознавания образов, филь-
трации, распознавания и синтеза изображений [61, 65].
Имеющиеся в настоящее время методы оценивания функции плотности
вероятности можно разделить на параметрические и непараметрические. Па-
раметрические методы используются в случае, когда известна структура зако-
на распределения с точностью до параметров, и задача сводится к построению
статистических оценок этих параметров, удовлетворяющих заданным условиям
(состоятельность, несмещённость и др.). К числу наиболее разработанных па-
раметрических методов относятся метод моментов, метод максимального прав-
доподобия, метод минимума 2 [46, 86]. Однако часто в практических задачах
возникают ситуации, когда структура закона распределения неизвестна, т.е. си-
туации непараметрической неопределённости [131]. При этом априорная ин-
формация о функции плотности вероятности ( ) носит более общий характер,
например, ( ) может предполагаться непрерывной на данном отрезке, имею-
щей -ю производную, имеющей суммируемый квадрат и т.п. Использование
параметрических методов при фактическом несовпадении структуры закона
распределения приводит к неудовлетворительным результатам. В этом случае
используются методы, получившие название непараметрических.
Исторически первой непараметрической оценкой функции плотности ве-
роятности является гистограмма, исследованная К. Пирсоном в 1895 г. Во вто-
рой половине 20-го века интерес к непараметрическим методам значительно
возрос, о чём свидетельствует ряд работ, посвящённых следующим оценкам:
полиграмма [131], оценка ближайших соседей [124], оценка Розенблатта – Пар-
зена [25, 20], проекционная оценка [144].
При использовании непараметрических методов представляет интерес ис-
следование сходимости получаемых оценок к истинной функции плотности ве-
роятности по заданной метрике, а также оценка скорости сходимости. В связи
с этим возникает задача оптимальной настройки оценок функции плотности
вероятности. Так, одной из первых формул для расчёта числа интервалов груп-
пирования одинаковой длины при построении гистограммы является формула
Стэрджеса [31]. В случае использования полиграммы или оценки ближай-
ших соседей подлежит настройке численный параметр, определяющий степень
сглаженности полученной оценки.
При использовании проекционной оценки плотности вероятности случай-
ного вектора x = ( 1 , . . . , ):

∑︁
^(x) = (x)
=0

В ходе выполнения диссертационной работы были получены следующие
результаты:
– показано, что весовое гильбертово пространство 2, (Ω) может быть
использовано для построения проекционной оценки любой функции плотности
вероятности (предл. 2.4);
– найден критерий на весовую функцию (x) для расширения простран-
ства 2 (Ω) до пространства 2, (Ω), которое содержит более широкое множе-
ство функций плотности вероятности (теорема 2.4);
– предложен способ построения весовой функции (x), при котором со-
ответствующее расширение 2, (Ω) пространства 2, содержит оцениваемую
функцию плотности вероятности (x) (формула (2.9));
– предложен новый метод настройки коэффициентов проекционной оцен-
ки функции плотности вероятности случайного вектора, являющийся обобще-
нием метода моментов (формула (2.13));
– доказано, что при определённых условиях частным случаем предло-
женного обобщения является традиционный метод оценивания коэффициентов
(теорема 2.5);
– предложен новый метод оценивания длины ряда проекционной оценки, в
которой коэффициенты настраиваются методом моментов или его обобщением
(формула (2.25));
– экспериментально установлено, что на малых выборках обобщение ме-
тода моментов позволяет повысить эффективность проекционной оценки (табл.
2.5, 2.8);
– экспериментально установлено, что для прикладных задач (восстановле-
ние функции регрессии, классификация, оценка количества информации) более
предпочтительной является оценка Розенблатта – Парзена.
Также было экспериментально установлено, что условиях малых выбо-
рок метод моментов является более предпочтительным при настройке проек-
ционной оценки. В тех случаях, когда нет возможности использовать ядерные
оценки (например, ограниченные вычислительные ресурсы), целесообразно ис-
пользовать проекционную оценку, так как она не содержит всю исследуемую
выборку и допускает лаконичное математическое выражение. При этом для
настройки длины ряда рекомендуется использовать предложенный подход.
Используемый метод сравнения алгоритмов восстановления плотности ве-
роятности и полученные численные результаты могут быть также использова-
ны при сравнении эффективности любых непараметрических оценок функции
плотности вероятности.

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    [telegram]

    Помогаем с подготовкой сопроводительных документов

    Совместно разработаем индивидуальный план и выберем тему работы Подробнее
    Помощь в подготовке к кандидатскому экзамену и допуске к нему Подробнее
    Поможем в написании научных статей для публикации в журналах ВАК Подробнее
    Структурируем работу и напишем автореферат Подробнее

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Катерина В. преподаватель, кандидат наук
    4.6 (30 отзывов)
    Преподаватель одного из лучших ВУЗов страны, научный работник, редактор научного журнала, общественный деятель. Пишу все виды работ - от эссе до докторской диссертации... Читать все
    Преподаватель одного из лучших ВУЗов страны, научный работник, редактор научного журнала, общественный деятель. Пишу все виды работ - от эссе до докторской диссертации. Опыт работы 7 лет. Всегда на связи и готова прийти на помощь. Вместе удовлетворим самого требовательного научного руководителя. Возможно полное сопровождение: от статуса студента до получения научной степени.
    #Кандидатские #Магистерские
    47 Выполненных работ
    Дмитрий Л. КНЭУ 2015, Экономики и управления, выпускник
    4.8 (2878 отзывов)
    Занимаю 1 место в рейтинге исполнителей по категориям работ "Научные статьи" и "Эссе". Пишу дипломные работы и магистерские диссертации.
    Занимаю 1 место в рейтинге исполнителей по категориям работ "Научные статьи" и "Эссе". Пишу дипломные работы и магистерские диссертации.
    #Кандидатские #Магистерские
    5125 Выполненных работ
    Кирилл Ч. ИНЖЭКОН 2010, экономика и управление на предприятии транс...
    4.9 (343 отзыва)
    Работы пишу, начиная с 2000 года. Огромный опыт и знания в области экономики. Закончил школу с золотой медалью. Два высших образования (техническое и экономическое). С... Читать все
    Работы пишу, начиная с 2000 года. Огромный опыт и знания в области экономики. Закончил школу с золотой медалью. Два высших образования (техническое и экономическое). Сейчас пишу диссертацию на соискание степени кандидата экономических наук.
    #Кандидатские #Магистерские
    692 Выполненных работы
    Лидия К.
    4.5 (330 отзывов)
    Образование высшее (2009 год) педагог-психолог (УрГПУ). В 2013 году получено образование магистр психологии. Опыт преподавательской деятельности в области психологии ... Читать все
    Образование высшее (2009 год) педагог-психолог (УрГПУ). В 2013 году получено образование магистр психологии. Опыт преподавательской деятельности в области психологии и педагогики. Написание диссертаций, ВКР, курсовых и иных видов работ.
    #Кандидатские #Магистерские
    592 Выполненных работы
    Антон П. преподаватель, доцент
    4.8 (1033 отзыва)
    Занимаюсь написанием студенческих работ (дипломные работы, маг. диссертации). Участник международных конференций (экономика/менеджмент/юриспруденция). Постоянно публик... Читать все
    Занимаюсь написанием студенческих работ (дипломные работы, маг. диссертации). Участник международных конференций (экономика/менеджмент/юриспруденция). Постоянно публикуюсь, имею высокий индекс цитирования. Спикер.
    #Кандидатские #Магистерские
    1386 Выполненных работ
    Татьяна С. кандидат наук
    4.9 (298 отзывов)
    Большой опыт работы. Кандидаты химических, биологических, технических, экономических, юридических, философских наук. Участие в НИОКР, Только актуальная литература (пос... Читать все
    Большой опыт работы. Кандидаты химических, биологических, технических, экономических, юридических, философских наук. Участие в НИОКР, Только актуальная литература (поставки напрямую с издательств), доступ к библиотеке диссертаций РГБ
    #Кандидатские #Магистерские
    551 Выполненная работа
    Татьяна Б.
    4.6 (92 отзыва)
    Добрый день, работаю в сфере написания студенческих работ более 7 лет. Всегда довожу своих студентов до защиты с хорошими и отличными баллами (дипломы, магистерские ди... Читать все
    Добрый день, работаю в сфере написания студенческих работ более 7 лет. Всегда довожу своих студентов до защиты с хорошими и отличными баллами (дипломы, магистерские диссертации, курсовые работы средний балл - 4,5). Всегда на связи!
    #Кандидатские #Магистерские
    138 Выполненных работ
    Екатерина П. студент
    5 (18 отзывов)
    Работы пишу исключительно сама на основании действующих нормативных правовых актов, монографий, канд. и докт. диссертаций, авторефератов, научных статей. Дополнительно... Читать все
    Работы пишу исключительно сама на основании действующих нормативных правовых актов, монографий, канд. и докт. диссертаций, авторефератов, научных статей. Дополнительно занимаюсь английским языком, уровень владения - Upper-Intermediate.
    #Кандидатские #Магистерские
    39 Выполненных работ
    AleksandrAvdiev Южный федеральный университет, 2010, преподаватель, канд...
    4.1 (20 отзывов)
    Пишу качественные выпускные квалификационные работы и магистерские диссертации. Опыт написания работ - более восьми лет. Всегда на связи.
    Пишу качественные выпускные квалификационные работы и магистерские диссертации. Опыт написания работ - более восьми лет. Всегда на связи.
    #Кандидатские #Магистерские
    28 Выполненных работ

    Последние выполненные заказы

    Другие учебные работы по предмету

    Расширенное суперпиксельное представление изображений для их обработки и анализа
    📅 2022год
    🏢 ФГАОУ ВО «Самарский национальный исследовательский университет имени академика С.П. Королева»
    Метод восстановления динамических изображений на основе оптимальной интерполяции
    📅 2022год
    🏢 ФГАОУ ВО «Самарский национальный исследовательский университет имени академика С.П. Королева»
    Метод конверсационного анализа неструктурированных текстов социальных сетей
    📅 2021год
    🏢 ФГАОУ ВО «Самарский национальный исследовательский университет имени академика С.П. Королева»