Прогнозирование электропотребления по историческим данным

Бойков Артем Сергеевич
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

Работа посвящена изучению задачи краткосрочного прогнозирования потребления электроэнергии предприятием по историческим данным. Был произведен анализ различных методов и подходов к решению данной задачи. В рамках исследования были реализованы модели на основе множественной линейной регрессии, регрессии опорных векторов, алгоритма случайного леса, а также нейронных сетей с радиальными базисными функциями. Проведен сравнительный анализ результатов прогнозирования на основе различных моделей. Рассмотрены различные способы кодирования исторических, календарных и метеоданных и их влияние на точность прогноза по трем метрикам качества.

Введение . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Постановка задачи . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Обзор литературы . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Глава 1. Обзор методов прогнозирования . . . . . . . . . . . . . . . 8
1.1. Множественная линейная регрессия . . . . . . . . . . . . . . 8
1.2. Регрессия опорных векторов . . . . . . . . . . . . . . . . . . 9
1.3. Случайный лес . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4. Нейронные сети . . . . . . . . . . . . . . . . . . . . . . . . . 13
Глава 2. Подготовка данных . . . . . . . . . . . . . . . . . . . . . . . 15
2.1. Исторические данные . . . . . . . . . . . . . . . . . . . . . . 16
2.2. Календарные данные . . . . . . . . . . . . . . . . . . . . . . 16
2.3. Метеоданные . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4. Удаление недель с выбросами . . . . . . . . . . . . . . . . . 23
2.5. Кросс-валидация . . . . . . . . . . . . . . . . . . . . . . . . 23
Глава 3. Результаты . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1. Разработка моделей . . . . . . . . . . . . . . . . . . . . . . . 25
3.2. Анализ результатов прогнозирования . . . . . . . . . . . . . 26
3.3. Визуализация прогноза . . . . . . . . . . . . . . . . . . . . . 30
Выводы . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Заключение . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Список литературы . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Приложение . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

На современном рынке электроэнергии между ее производителями и
потребителями используются контракты. Эти контракты могут быть как дол-
госрочными, на несколько месяцев, и даже лет, так и краткосрочными с го-
ризонтом в одни сутки. Отклонение фактического потребления электроэнер-
гии от спрогнозированного объема влечет необходимость для предприятия
продажи излишнего или закупки недостающего объема электроэнергии по
заведомо невыгодным ценам. Поэтому задача планирования и прогнозирова-
ния энергопотребления является достаточно значимой в электроэнергетике,
и повышение точности этого прогнозирования может существенно снизить
затраты на покупку электроэнергии предприятием.
С развитием вычислительных технологий данная задача все чаще пе-
реходит от экспертных систем к системам автоматизированным, а новые ме-
тоды и алгоритмы машинного обучения и статистические модели позволяют
повышать точность этого прогноза, учитывать множество разных факторов и
находить сложные нелинейные зависимости в данных.
Таким образом, имеющей большое практическое применение и актуаль-
ной научно-технической задачей является разработка методик прогнозиро-
вания потребления электрической энергии на основе исторических и других
имеющихся данных.
Постановка задачи
Целью данной работы является построение модели для прогнозиро-
вания почасового потребления электроэнергии предприятием с горизонтом
прогноза в два дня на основе имеющихся исторических данных об электропо-
треблении и метеофакторах. Также, за это время имеются плановые значения
электропотребления, которые будут использоваться для вычисления метрик
качества построенной прогностической модели.
В связи с поставленной целью были рассмотрены следующие вопросы:

В данной работе был проведен обзор и анализ методов, применяемых
для краткосрочного прогнозирования потребления электроэнергии. Также,
были реализованы модели на основе множественной линейной регрессии, ре-
грессии опорных векторов, случайного леса и радиальных базисных нейрон-
ных сетей. Построенные модели были протестированы на основе имеющих-
ся реальных данных почасового потребления электроэнергии предприятием.
Был проведен анализ, визуализация и сравнение полученных результатов.
Для реализации программной части был использован язык программи-
рования Python 3.6 и библиотеки NumPy для работы с массивами и матема-
тическими функциями, Pandas для представления и обработки данных в виде
таблиц, Scikit Learn для реализации алгоритмов машинного обучения, Keras
для реализации нейронных сетей и Matplotlib для визуализации данных.
Для улучшения полученного результата можно рассмотреть добавление
дополнительных данных, таких как график работы предприятия и данные о
внутренних процессах. Также можно рассмотреть комбинированные методы
и разбиение данной задачи на несколько подзадач и построение отдельных
моделей для каждой из этих подзадач, например, строить отдельный про-
гноз для базового электропотребления предприятия и электропотребления
оборудования.

[1] Hong T. Short Term Electric Load Forecasting : дис. – North Carolina State
University, 2010.

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    [telegram]

    Последние выполненные заказы

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Петр П. кандидат наук
    4.2 (25 отзывов)
    Выполняю различные работы на заказ с 2014 года. В основном, курсовые проекты, дипломные и выпускные квалификационные работы бакалавриата, специалитета. Имею опыт напис... Читать все
    Выполняю различные работы на заказ с 2014 года. В основном, курсовые проекты, дипломные и выпускные квалификационные работы бакалавриата, специалитета. Имею опыт написания магистерских диссертаций. Направление - связь, телекоммуникации, информационная безопасность, информационные технологии, экономика. Пишу научные статьи уровня ВАК и РИНЦ. Работаю техническим директором интернет-провайдера, имею опыт работы ведущим сотрудником отдела информационной безопасности филиала одного из крупнейших банков. Образование - высшее профессиональное (в 2006 году окончил военную Академию связи в г. Санкт-Петербурге), послевузовское профессиональное (в 2018 году окончил аспирантуру Уральского федерального университета). Защитил диссертацию на соискание степени "кандидат технических наук" в 2020 году. В качестве хобби преподаю. Дисциплины - сети ЭВМ и телекоммуникации, информационная безопасность объектов критической информационной инфраструктуры.
    #Кандидатские #Магистерские
    33 Выполненных работы
    Дмитрий Л. КНЭУ 2015, Экономики и управления, выпускник
    4.8 (2878 отзывов)
    Занимаю 1 место в рейтинге исполнителей по категориям работ "Научные статьи" и "Эссе". Пишу дипломные работы и магистерские диссертации.
    Занимаю 1 место в рейтинге исполнителей по категориям работ "Научные статьи" и "Эссе". Пишу дипломные работы и магистерские диссертации.
    #Кандидатские #Магистерские
    5125 Выполненных работ
    Катерина М. кандидат наук, доцент
    4.9 (522 отзыва)
    Кандидат технических наук. Специализируюсь на выполнении работ по метрологии и стандартизации
    Кандидат технических наук. Специализируюсь на выполнении работ по метрологии и стандартизации
    #Кандидатские #Магистерские
    836 Выполненных работ
    Логик Ф. кандидат наук, доцент
    4.9 (826 отзывов)
    Я - кандидат философских наук, доцент кафедры философии СГЮА. Занимаюсь написанием различного рода работ (научные статьи, курсовые, дипломные работы, магистерские дисс... Читать все
    Я - кандидат философских наук, доцент кафедры философии СГЮА. Занимаюсь написанием различного рода работ (научные статьи, курсовые, дипломные работы, магистерские диссертации, рефераты, контрольные) уже много лет. Качество работ гарантирую.
    #Кандидатские #Магистерские
    1486 Выполненных работ
    Шиленок В. КГМУ 2017, Лечебный , выпускник
    5 (20 отзывов)
    Здравствуйте) Имею сертификат специалиста (врач-лечебник). На данный момент являюсь ординатором(терапия, кардио), одновременно работаю диагностом. Занимаюсь диссертац... Читать все
    Здравствуйте) Имею сертификат специалиста (врач-лечебник). На данный момент являюсь ординатором(терапия, кардио), одновременно работаю диагностом. Занимаюсь диссертационной работ. Помогу в медицинских науках и прикладных (хим,био,эколог)
    #Кандидатские #Магистерские
    13 Выполненных работ
    Кормчий В.
    4.3 (248 отзывов)
    Специализация: диссертации; дипломные и курсовые работы; научные статьи.
    Специализация: диссертации; дипломные и курсовые работы; научные статьи.
    #Кандидатские #Магистерские
    335 Выполненных работ
    Елена С. Таганрогский институт управления и экономики Таганрогский...
    4.4 (93 отзыва)
    Высшее юридическое образование, красный диплом. Более 5 лет стажа работы в суде общей юрисдикции, большой стаж в написании студенческих работ. Специализируюсь на напис... Читать все
    Высшее юридическое образование, красный диплом. Более 5 лет стажа работы в суде общей юрисдикции, большой стаж в написании студенческих работ. Специализируюсь на написании курсовых и дипломных работ, а также диссертационных исследований.
    #Кандидатские #Магистерские
    158 Выполненных работ
    Дмитрий К. преподаватель, кандидат наук
    5 (1241 отзыв)
    Окончил КазГУ с красным дипломом в 1985 г., после окончания работал в Институте Ядерной Физики, защитил кандидатскую диссертацию в 1991 г. Работы для студентов выполня... Читать все
    Окончил КазГУ с красным дипломом в 1985 г., после окончания работал в Институте Ядерной Физики, защитил кандидатскую диссертацию в 1991 г. Работы для студентов выполняю уже 30 лет.
    #Кандидатские #Магистерские
    2271 Выполненная работа
    Анна Александровна Б. Воронежский государственный университет инженерных технол...
    4.8 (30 отзывов)
    Окончила магистратуру Воронежского государственного университета в 2009 г. В 2014 г. защитила кандидатскую диссертацию. С 2010 г. преподаю в Воронежском государственно... Читать все
    Окончила магистратуру Воронежского государственного университета в 2009 г. В 2014 г. защитила кандидатскую диссертацию. С 2010 г. преподаю в Воронежском государственном университете инженерных технологий.
    #Кандидатские #Магистерские
    66 Выполненных работ

    Другие учебные работы по предмету