Обработка изображений с помощью методов машинного обучения

Авдеенко Дмитрий Юрьевич
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

В результате данной выпускной квалификационной работы изучены различные методы машинного обучения для анализа изображений, области их применения и способы решения задач данными методами. Решена задача распознавания и сегментирования дефектов на изображениях стальных изделий. В практической части работы предложено несколько подходов для решения поставленной задачи, реализованы некоторые модели на языке Python.

Введение 3

Постановка задачи 4

Обзор литературы 5

1. Обзор технологий и подходов в решении задачи 6
1.1. U-Net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2. SENet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3. PSPNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4. Rectified Adam оптимизация . . . . . . . . . . . . . . . . . 10
1.5. Коэффициент Жаккара . . . . . . . . . . . . . . . . . . . 12
1.6. Псевдо-маркировка данных . . . . . . . . . . . . . . . . . 12

2. Данные 13

3. Модель решения 18

4. Исследование 21
4.1. Подготовка данных и инструментария для исследования 21
4.2. Многоклассовая классификация . . . . . . . . . . . . . . . 21
4.3. Многоклассовая сегментация . . . . . . . . . . . . . . . . 23
4.4. Бинарная сегментация . . . . . . . . . . . . . . . . . . . . 25
4.5. Результаты . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Выводы 29

Заключение 30

Список литературы 31

Сталь является одним из важнейших строительных материалов со-
временности. Стальные изделия устойчивы к естественному и искус-
ственному износам, что поспособствовало популярности данного мате-
риала во всем мире. Компания Северсталь лидирует в сфере добычи и
производства стали и считает, что будущее металлургии требует раз-
вития в экономических, экологических и социальных аспектах отрасли,
а также серьезно относится к корпоративной ответственности. Недав-
но компания создала крупнейшее в стране хранилище промышленных
данных с петабайтами информации, которая ранее никак не изучалась.
В настоящее время Северсталь ищет возможности в области машинного
обучения для улучшения автоматизации, повышения эффективности и
поддержания высокого качества своей продукции.
Процесс производства листовой стали особенно деликатный. От на-
грева и прокатки до сушки и резки – к моменту готовности листа стали
несколько машин соприкасаются с ним. Сегодня Северсталь использу-
ет изображения с высокочастотных камер для алгоритма обнаружения
дефектов.
Основной идей данной работы было создание алгоритма для авто-
матического анализа, локализации и классификации поверхностных де-
фектов на стальном листе.
Постановка задачи
Цель этого исследования – предсказать местоположение и тип де-
фектов, обнаруженных при производстве стали, используя предостав-
ленные изображения. Названия изображений имеют уникальный иден-
тификатор, и задача состоит в том, чтобы сегментировать каждое изоб-
ражение и классифицировать дефекты в наборе тестовых данных.
Даны обучающая выборка состоящая из 12568 уникальных изобра-
жений и тестовая выборка, состоящая из 1801 изображения. Так же
предлагается текстовый файл, с информацией о дефекте на каждом
изображении.

Целью данной выпускной квалификационной работы являлись ис-
следование задачи обнаружения дефектов на листах стали, а также
практическая реализация модели решения на языке Python с исполь-
зованием фреймворков и библиотек глубокого обучения.
На первом этапе были формально определены задача и исходные
данные для дальнейшего исследования. Произведено подробное опи-
сание изображений, представленных в качестве обучающей и тестовой
выборок. Исследованы структура выборок, распределение изображений
по классам, отличия классов дефектов.
Представлено несколько моделей, которые были использованы для
решения данной задачи, описаны их недостатки и особенности приме-
нения, а также выбрана модель для практической реализации.
На следующем этапе была программно реализована модель и по-
дробно описаны алгоритмы для каждой части полученного решения.
Заключительным этапом стали подведение итогов и оценка качества
предсказаний построенной модели.
В результате данной выпускной квалификационной работы изуче-
ны различные методы машинного обучения для анализа изображений,
области их применения и способы решения задач данными методами.
Подробно проанализирована и описана задача обнаружения дефектов
на листах стали от компании Северсталь. В практической части выпуск-
ной квалификационной работы предложено несколько подходов для ре-
шения поставленной задачи, реализовано несколько моделей на языке
Python.

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    [telegram]

    Последние выполненные заказы

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Анастасия Л. аспирант
    5 (8 отзывов)
    Работаю в сфере метрологического обеспечения. Защищаю кандидатскую диссертацию. Основной профиль: Метрология, стандартизация и сертификация. Оптико-электронное прибост... Читать все
    Работаю в сфере метрологического обеспечения. Защищаю кандидатскую диссертацию. Основной профиль: Метрология, стандартизация и сертификация. Оптико-электронное прибостроение, управление качеством
    #Кандидатские #Магистерские
    10 Выполненных работ
    Дмитрий М. БГАТУ 2001, электрификации, выпускник
    4.8 (17 отзывов)
    Помогаю с выполнением курсовых проектов и контрольных работ по электроснабжению, электроосвещению, электрическим машинам, электротехнике. Занимался наукой, писал стать... Читать все
    Помогаю с выполнением курсовых проектов и контрольных работ по электроснабжению, электроосвещению, электрическим машинам, электротехнике. Занимался наукой, писал статьи, патенты, кандидатскую диссертацию, преподавал. Занимаюсь этим с 2003.
    #Кандидатские #Магистерские
    19 Выполненных работ
    Олег Н. Томский политехнический университет 2000, Инженерно-эконо...
    4.7 (96 отзывов)
    Здравствуйте! Опыт написания работ более 12 лет. За это время были успешно защищены более 2 500 написанных мною магистерских диссертаций, дипломов, курсовых работ. Явл... Читать все
    Здравствуйте! Опыт написания работ более 12 лет. За это время были успешно защищены более 2 500 написанных мною магистерских диссертаций, дипломов, курсовых работ. Являюсь действующим преподавателем одного из ВУЗов.
    #Кандидатские #Магистерские
    177 Выполненных работ
    Татьяна Б.
    4.6 (92 отзыва)
    Добрый день, работаю в сфере написания студенческих работ более 7 лет. Всегда довожу своих студентов до защиты с хорошими и отличными баллами (дипломы, магистерские ди... Читать все
    Добрый день, работаю в сфере написания студенческих работ более 7 лет. Всегда довожу своих студентов до защиты с хорошими и отличными баллами (дипломы, магистерские диссертации, курсовые работы средний балл - 4,5). Всегда на связи!
    #Кандидатские #Магистерские
    138 Выполненных работ
    Анна Александровна Б. Воронежский государственный университет инженерных технол...
    4.8 (30 отзывов)
    Окончила магистратуру Воронежского государственного университета в 2009 г. В 2014 г. защитила кандидатскую диссертацию. С 2010 г. преподаю в Воронежском государственно... Читать все
    Окончила магистратуру Воронежского государственного университета в 2009 г. В 2014 г. защитила кандидатскую диссертацию. С 2010 г. преподаю в Воронежском государственном университете инженерных технологий.
    #Кандидатские #Магистерские
    66 Выполненных работ
    Лидия К.
    4.5 (330 отзывов)
    Образование высшее (2009 год) педагог-психолог (УрГПУ). В 2013 году получено образование магистр психологии. Опыт преподавательской деятельности в области психологии ... Читать все
    Образование высшее (2009 год) педагог-психолог (УрГПУ). В 2013 году получено образование магистр психологии. Опыт преподавательской деятельности в области психологии и педагогики. Написание диссертаций, ВКР, курсовых и иных видов работ.
    #Кандидатские #Магистерские
    592 Выполненных работы
    Дмитрий Л. КНЭУ 2015, Экономики и управления, выпускник
    4.8 (2878 отзывов)
    Занимаю 1 место в рейтинге исполнителей по категориям работ "Научные статьи" и "Эссе". Пишу дипломные работы и магистерские диссертации.
    Занимаю 1 место в рейтинге исполнителей по категориям работ "Научные статьи" и "Эссе". Пишу дипломные работы и магистерские диссертации.
    #Кандидатские #Магистерские
    5125 Выполненных работ
    Александра С.
    5 (91 отзыв)
    Красный диплом референта-аналитика информационных ресурсов, 8 лет преподавания. Опыт написания работ вплоть до докторских диссертаций. Отдельно специализируюсь на повы... Читать все
    Красный диплом референта-аналитика информационных ресурсов, 8 лет преподавания. Опыт написания работ вплоть до докторских диссертаций. Отдельно специализируюсь на повышении уникальности текста и оформлении библиографических ссылок по ГОСТу.
    #Кандидатские #Магистерские
    132 Выполненных работы
    Елена Л. РЭУ им. Г. В. Плеханова 2009, Управления и коммерции, пре...
    4.8 (211 отзывов)
    Работа пишется на основе учебников и научных статей, диссертаций, данных официальной статистики. Все источники актуальные за последние 3-5 лет.Активно и уместно исполь... Читать все
    Работа пишется на основе учебников и научных статей, диссертаций, данных официальной статистики. Все источники актуальные за последние 3-5 лет.Активно и уместно использую в работе графический материал (графики рисунки, диаграммы) и таблицы.
    #Кандидатские #Магистерские
    362 Выполненных работы

    Другие учебные работы по предмету

    Кооперативные игры на гиперграфах
    📅 2019год
    🏢 Санкт-Петербургский государственный университет